From Grasshopper to Tekla

I keep on trying the Grasshopper Plugin Geometry Gym, and one of our current projects made me search more extensively in the Tekla export module.

It presents itself as a set of tools to create beams, plates, bolts and welds. There is also a TeklaBakeStructure component to send our Grasshopper geometry to Tekla.

Creating beams is pretty easy, all you need is a BeamProfileProperty before, where you set all Tekla parameters of your expected beam. Then you just link your wireframe lines to the beam component.

I struggled for a while to set the Insertion Point property in order to set the position of the beam axis before realizing that I only had to right-click on the parameter to set it. I finally extracted it to keep it visible.

The plate component is also quite simple, with a polyline as input and more or less the same set of property as for beams.

To link two parts together, and so create a Tekla assembly, you have to create a group of bolts (or a weld), then assign it to the main part with the specific input, and add to the assembly all secondary parts you need. I am not sure if it is realistic to create assembly for a whole project directly in Grasshopper, but maybe I am missing some point here. My current project involves a lot of connexions, so I will keep on exploring these features.

 

To exploit a model imported in Rhino, Jon Mirchtin has developed two specific components call Reverse Engineer. You can use it to retrieve beams or plates properties from geometry. Here is an example of a plate recreated from a standard Rhino Closed PolySurface.

Once all you profiles and other parts are created into Grasshopper, you can export them. Just run Tekla, start a new project, and click on the TeklaBakeStructure component on your Grasshopper canvas.

Your model is now export in your Tekla project.

This plug in fill one of the most lack in the Tekla functionalities, the ability to create complex shape quickly. With this module, it became pretty easy to adapt a lot of beam on a double-curved roof, and create them in Tekla.

About Tekla Structure


I just came out of a week of training on Tekla, and I feel like talking about it. As you might expect, Tekla Structure is a BIM application mainly oriented toward structural modeling and detailing. Originally design for modeling steel structures, it’s now also covers concrete structures, execution drawings extraction, and model reviewing features.

Far away from code-driven geometry and other parametrical modeling stuff, Tekla is practical. Ok, you cannot generate thousands of roof panels with a nice piece of .NET, but a least, you don’t spend fifteen minutes to draw a wall. This pragmatic approach combined with powerful drawings generation features, made Tekla a real construction-oriented BIM software.

Since its acquisition by Trimble, a company mostly knows for its GPS, lasers and other positioning hardware, Tekla had developed a great deal of applications for the construction site. Fully integrated with the Trimble hardware, it allows adding topographic points to a model, generate new coordinates for the layout, and export them in a Trimble tablet to implant them directly on site.

But what impresses me most is the execution drawing generation. Once you have drawn the few beams of your future greenhouse (for example), liked them together with the automatic assembly tools, you are just a click away from generating all the drawings you need. Basic templates include general arrangement drawings, single-part drawing or assembly drawings, but you can also fully customize your production regarding the needs of your design office.

But being pragmatic does not in any way prevent Tekla from being smart, and it comes with a large set of parametric components allowing designing quickly every details of our structure. And if these components are not enough, you can also design your own, with an interface looking like the family editor of Revit.

Nowadays, Tekla is broadly integrated into design offices for steel detailing (even in France …), and since its acquisition by Trimble, it seems to becoming the most site-oriented of BIM software.